
The proof rules for Identity 
 
The proof rules ∀I, ∀E, ∃I, and ∃E together with the primitive proof rules of SL form a 
complete set of rules for any inferences that do not involve the identity symbol.  
However, if the language contains that symbol (as ours does) we need two additional 
rules to for a complete set – =I and =E.   
 
The identity introduction (=I) rule is simple.  You can simply write any identity statement 
of the form α=α any time you feel like it depending on no assumptions at all.  In other 
words, you can write a=a, b=b, c=c, etc.  This rule allows you to prove a few theorems 
about identity such as. 
 
 (1) a=a  =I   (1) a=a  =I   
 (2) ∀x x=x 1 ∀I   (2) ∃y a=y 1 ∃I 
      (3) ∀x∃y x=y 2 ∀I 
 
The proof on the left shows that everything is equal to itself and the proof on the right 
shows us that for anything at all, it is equal to something (namely, itself.)  There are no 
assumptions written to the left of any line because none of the lines depend on any 
assumptions.  The =I rule is not used very often in interesting proofs but it is needed to 
form a complete rule system. 
 
The =E rule is much more interesting.  It represents what is generally known in 
philosophy as Leibniz’s Law.  This law states that if a and b stand for the same thing, 
then anything true of a must be true of b.  For example, given that we have a=b, if Pa is 
true, then Pb must be true.  If ~Pa is true, then ~Pb must be true.  If ∀x∃y(Rxy & Rxa) is 
true then ∀x∃y(Rxy & Rxb) must be true.  The relaxed version of the rule (which we use) 
allows each of these inferences from a=b or from b=a.  In other words, from Pa together 
with either a=b or b=a we can get Pb. 
 
It is very important to note the correct direction of this rule.  From the sentence a=b and a 
statement containing a, you can derive a statement containing b.  You cannot derive a=b 
just from two sentences that are alike.  For example, from Pa and Pb it is not correct to 
infer a=b.  Maybe Adam is a painter and Bob is a painter.  This does not mean that Adam 
is Bob.  However, if ‘Adam’ and ‘Bob’ referring to the same person (maybe one is a 
nickname) then if Adam was a painter, Bob would be too. 
 
Here are some example proofs: 
 
EXAMPLE 1:  ∀x(Px → x=a), ∃x(Px & Qx)  ├  Qa 
 
________________________________________________________________________ 
Step 1.  My second premise is an existential  1 (1) ∀x(Px → x=a) A 
so I will make up a name for it so I can use  2 (2) ∃x(Px & Qx) A 
∃E.  The name needs to be arbitrary so I  3 (3) Pb & Qb  A 
can’t use ‘a’.  But any other name will do.  



       (n-1) Qa     new goal 
       (n)  Qa   ∃E 
 
 
Step 2.  Now to use premise 1, I will plug  1 (1) ∀x(Px → x=a) A 
‘b’ in for ‘x’.  Once I do that, it is easy to  2 (2) ∃x(Px & Qx) A 
get b=a.  But now that I know b=a, anything 3 (3) Pb & Qb  A 
that is true of b must also be true of a. 3 (4) Pb   3 &E 
In particular, since Qb is true, Qa is also 3 (5) Qb   3 &E 
true.      1 (6) Pb → b=a  1 ∀E 
      1,3 (7) b=a   4,6 →E 
      1,3 (8) Qa   5,7 =E 
      1,2 (9) Qa           2,8 ∃E(3) 
 
 
EXAMPLE 2:  ∃x∀y x=y, ∀xRxx  ├  ∀x∀yRxy 
 
Step 1: Since my first premise is existential,   1 (1) ∃x∀y x=y  A 
I will make up a name for that thing so I can   2 (2) ∀xRxx  A 
use ∃E.  I will choose ‘a’ since it doesn’t matter. 3 (3) ∀y a=y  A 
Now my goal is a universal so I will try to prove 
an arbitrary instance of it so I can use ∀I.  Since       Rbc       new goal 
this instance must be arbitrary it cannot contain ‘a’.  (n-2) ∀yRby  ∀I 
        (n-1)  ∀x∀yRxy ∀I 
        (n) ∀x∀yRxy  ∃E  
 
 
Step 2:  There are many different ways of finishing  1 (1) ∃x∀y x=y  A 
this proof.  They all involve realizing that we need 2 (2) ∀xRxx  A 
to get an ‘R’ sentence from 2 and then use =E to  3 (3) ∀y a=y  A 
manipulate it to get Rbc.  I will plug in ‘a’ to line  2 (4) Raa   2 ∀E 
2 and then replace the ‘a’s with b and c.  It would  3 (5) a=b   3 ∀E 
also work to get, say, Rbb and then replace the 2,3 (6) Rba  4,5 =E 
second ‘b’ with ‘c’.  Of course to do that we would  3 (7) a=c   3 ∀E 
need b=c which we could get from a=b and a=c. 2,3 (8) Rbc  6,7 =E 
       2,3 (9) ∀yRby  8 ∀I 
       2,3 (10) ∀x∀yRxy 9 ∀I 
       1,2 (11) ∀x∀yRxy      1,10 ∃E(3) 
 
 
If we look carefully at the first line and the way in which it was used, it becomes clear 
that line 1 is a way of saying that there is only one thing in the universe.  No matter what 
letter we come up with (say b or c) it is going to be equal to that first thing.  Now, if there 
is only one thing and everything is related to itself (∀xRxx) then that one thing is related 



to itself (Raa).  But this is everything there is so everything is related to everything 
(∀x∀yRxy). 

 
 
The NI rule:  
 
The NI rule (for negated identity) is a shortcut rule that gives us slightly more efficient 
ways of proving sentences of the form x≠y.  It is important to think of this as the negation 
of x=y.  For example, from x=y → Pa and ~Pa, we can derive x≠y by MT.  The 
contraposition of Leibniz’s Law allows us to infer that if two things do not share all of 
the same properties they must not be identical.  In other words, from Pa and ~Pb we 
should be able to infer a≠b.  The general form is that from one sentence containing α and 
its exact negation except for containing β instead of α, you can infer α≠β.  This is fairly 
easily done via a reductio argument.   
 
1 (1) Pa  A    1 (1) ∀x(Px→Pc) A 
2 (2) ~Pb A    2 (2) ~∀x(Px→Pd) A 
3 (3) a=b  A    3 (3) c=d   A 
2,3 (4) ~Pa  2,3 =E    2,3 (4) ∀x(Px→Pd) 1,3 =E 
1,2 (5) a≠b  1,4 RAA(3)   1,2 (5) c≠d      1,4 RAA(3) 
 
However, because this form of reasoning is clearly valid and so common in difficult 
proofs, I will allow you to skip the RAA reasoning and instead infer directly that α≠β by 
the NI rule: 
 
1 (1) Pa  A    1 (1) ∀x(Px→Pc) A 
2 (2) ~Pb A    2 (2) ~∀x(Px→Pd) A 
1,2 (3) a≠b  1,2 NI    1,2 (3) c≠d       1,2 NI 
 
Note that it is important that one of the sentences be the exact negation of other except 
for the name change.  For example, it is not correct to infer a≠b from Pa v Qc and ~Pb v 
Qc.  Here only part of the sentence is the negation of a part of the other sentence.  a=b is 
consistent with each of these sentences – for example, Qc may be true and thus make 
both sentences true.   
 
 
EXAMPLE 3: ∀x(Gx → Hx), ∀x(Fx → Gx), Fa & ~Hb  ├  a≠b 
 
Step 1: My goal is a negated identity claim.    1 (1) ∀x(Gx → Hx)  A 
I will try to get two sentences such that one   2 (2) ∀x(Fx → Gx) A 
is the exact contradictory of the other except  3 (3) Fa & ~Hb  A 
that one contains ‘a’ where the other has ‘b’.   
        (n) a≠b   NI 
 
 



Step 2: This is fairly easy here.  Simply plugging 1 (1) ∀x(Gx → Hx)  A 
in an obvious letter (either a or b will work) to 1 2 (2) ∀x(Fx → Gx) A 
and 2 will lead us to our goal sentences.  3 (3) Fa & ~Hb  A 
       3 (4) Fa   3 &E 
       3 (5) ~Hb   3 &E 
       1 (6) Ga → Ha  1 ∀E 
       2 (7) Fa → Ga  2 ∀E 
In this case, since I have Ha and ~Hb   2,3 (8) Ga             4,7 →E 
a and b must not be identical.    1,2,3 (9) Ha             6,8 →E 
       1,2,3 (10) a≠b   5,9 NI 
 
 
EXAMPLE 4:  ∃x(Px & ∀y(~Rxy → x=y))  ├  ∀x(~Px → ∃y(y≠x & Ryx)) 
 
Step 1: My premise is existential so I  1 (1) ∃x(Px & ∀y(~Rxy → x=y))     A 
introduce a name for it.  My goal is   2 (2) Pa &  ∀y(~Ray → a=y)        A 
universal so I will try to prove an   2 (3) Pa    2 &E 
arbitrary instance of it.  Since my new  2 (4) ∀y(~Ray → a=y)  2 &E 
goal is conditional, I assume its antecedent 5 (5) ~Pb   A 
and try to prove its consequent.   
       (n-3) ∃y(y≠b & Ryb)         new goal 
                                             (n-2) ~Pb → ∃y(y≠b & Ryb)        →I 
                  (n-1) ∀x(~Px → ∃y(y≠x & Ryx))  ∀I 
                  (n)    ∀x(~Px → ∃y(y≠x & Ryx))  ∃E 
 
 
Step 2: I note that my goal is an   1 (1) ∃x(Px & ∀y(~Rxy → x=y))     A 
existential so if I could prove an instance 2 (2) Pa &  ∀y(~Ray → a=y)        A 
of it I would be done.  Since one of the  2 (3) Pa    2 &E 
sentences to prove would be y≠b y is   2 (4) ∀y(~Ray → a=y)  2 &E 
obviously not going to be ‘b’.  It is now  5 (5) ~Pb   A 
clear that it needs to be ‘a’.  We can   2,5 (6) a≠b    3,5 NI 
easily get the a≠b part, now we just need   
the Rab part to have an instance of our goal.  (n-4) a≠b & Rab  &I 
       (n-3) ∃y(y≠b & Ryb)          ∃I 
                                             (n-2) ~Pb → ∃y(y≠b & Ryb)        →I 
                  (n-1) ∀x(~Px → ∃y(y≠x & Ryx))  ∀I 
                  (n)    ∀x(~Px → ∃y(y≠x & Ryx))  ∃E 
 
 
Step 3:  To get Rab I notice that since  1 (1) ∃x(Px & ∀y(~Rxy → x=y))     A 
I have a≠b, I can plug ‘b’ into line 4 to get  2 (2) Pa &  ∀y(~Ray → a=y)        A 
something useful.  It turns out to be just  2 (3) Pa    2 &E 
exactly what I need.    2 (4) ∀y(~Ray → a=y)  2 &E 



      5 (5) ~Pb   A 
      2,5 (6) a≠b    3,5 NI 
      2 (7) ~Rab → a=b  4 ∀E 
      2,5 (8) Rab   6,7 MT 
      2,5 (9) a≠b & Rab   6,8 &I 
      2,5 (10) ∃y(y≠b & Ryb)          9 ∃I 
                  2 (11) ~Pb → ∃y(y≠b & Ryb)         10→I(5) 
     2 (12)  ∀x(~Px → ∃y(y≠x & Ryx))  11 ∀I 
     1 (13)  ∀x(~Px → ∃y(y≠x & Ryx)) 1,12 ∃E(2) 
 
 
       


